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Abstract  

Stream processing is a basic method of code optimization 

related to loop fusion that can improve the space and speed 

of iterative applicative expressions by a process of loop 

combination. It has been studied before in applications to 

program improvement and batch oriented database 

restructuring. Previous attempts al implementation have been 

either highly restrictive, have required manual intervention, or 

have involved naive strategies resulting in impractically slow 

running times. 

This paper defines a new model for a stream processing 

problem for handling a wide class of applicative expressions 

that can be evaluated by looping in an unordered way through 

a single set or tuple valued argument. This problem is 

formulated graph theoretically and shown to be NP-Hard, 

even in the presence of constraints. Two new efficient 

heuristic algorithms will be presented. The efficiency of these 

solutions allows stream processing to be applied dynamically as 

a database query optimization, and as an important component 

of a high level language optimizer. 

Our method of stream processing has been implemented and 

used effectively within the RAPTS transformational 

programming system. 

1.Introduct ion 

Translation of relational database queries into efficient 

executable code is an interesting and challenging problem 

Permission to copy without fee all or part of  this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title o f  the 
publication and its date appear, and notice is given that copying is by 
permission of  the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1984 ACMO-89791-142-3/84/O08/O053 $00 .75  

facing database, data structure, and program language 

researchers. The optimization techniques stressed in the 

database literature mainly involve algebraic manipulations that 

change the order of evaluation of subqueries so that selections 

and projections are performed before join and cartesian 

products [27]. Since the cost of forming a join or cartesian 

product of two relations is related to the product of the sizes 

of these relations, it makes sense to first restrict the sizes of 

each relation by performing selections and projections. Yet 

after a query is transformed in this way, a naive execution 

requires each subquery to be executed and each intermediate 

relation to be stored. Stream processing is a technique that 

seeks to avoid intermediate storage and to minimize sequential 

search. 

In the next section the rudiments of our technique are 

explained in terms of a simple example. Section 3 presents a 

precise formal description of the stream processing problem. 

Sections 4 and 5 discuss the complexity of solving this 

problem. Section 6 gives relevant hackround. The final 

section concludes with open problems. 

2. S t ream Processing Example 

To illustrate stream processing applied to database queries, we 

will assume a simple database modeled after the SETL 

programming language [24]. Primitive data values consist of 

standard boolean, numeric, and string types organized within 

finite tuples, sots, and maps. Tuples are dynamic vectors, and 

are ordered from the first to the last component: sets are 

unordered, and cannot contain repeated elements; maps are 

dynamic binary relations represented by sets of pairs [x.y] 

each of which associates a domain value x with a 

corresponding range value y. The elements of tuples, sets, and 

maps can themselves be tuples, sets. and maps to any depth 

of nesting. 

The SETL-like query language incorporates conventional 

dictions as are found in other programming languages, and 

with a few exceptions uses universally accepted mathematical 

set notations (see [11]). Table 1 below lists the main 

notational features of SETL used in this paper, 
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s with: = x 

s l e s s :  = x 

x ~ S 

s U : =  d e l t a  

s - : =  d e l t a  

f ( x )  := y 

f (x I . . . . .  xn) 
( For x • S) 

BI ock (x) 
end forall 
Ix • s I k ( x ) }  
H x • s I k(x) 
V x • s I k(x) 
s U t 
s n t 
S - t 

f[s] 
#s 
+/s 
U/s 
mig/s 

f.g 

O p e r a t  i o n  Remarks 

add element x to set s 
delete element x from set s 
set membership 
add set delta to set s 
delete set delta from set s 

modify function f at point x to 
have value y 
function retrleval 
Execute Block(x) for every 
value x • s 

set former 
existential quantifier 
universal quantifier 
set union 
set intersection 
set difference 
image set 
set or tuple cardinality 
a g g r e g a t e  sum over set or tuple s 
aggregate union 
aggregate minimum 
map inverse; i.e.,{[y,x]: [x,y]ef} 
map composition; i.e., 
{[x,z]: [x,y] • g,  Z • f{y}} 

s x t cartesian product; i.e., 
{Ix,y]: x • s, y • t} 

Table I. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The tuple, set. and map data types together with powerful set 

theoretic operations facilitate the modeling of high level 

optimizations used to improve relational queries: but more 

than that. we can even model the physical structure of 

databases conveniently so that lower level optimizations can bc 

represented abstractly. The discussion of stream processing 

will benefit from this set theoretic model. 

We note that database relations can be represented either as 

sets of tuples, or as "entity" sets of blank atoms (i.e., Lisp 

gensyms) together with maps from entity sets into primitive 

values. The relational notion of attribute is captured in the 

set theoretic notion of map. All of the primitive relational 

operations - selection, projection, join. difference, and union 

- can be represented by various forms of the set former (see 

[20] for further discussion of this thought). 

We assume that sets are implemented on secondary storage 

using an extensible hash file organization that supports 

membership  tests, element additions, and element deletions in 

unit time. and iteration through all set elements in time 

proportional to the cardinality of  the set [5]. The domains 

of maps can be hashed like sets, and range elements can be 

accessed rapidly using pointers. 

Fagin. et. al. originally proposed that the directory portion of 

their extensible hashing file structure could reside in primary 

memory to improve the performance of the operations just 

mentioned [5]. We note that this arrangement also makes it 

possible to perform direct access to a record in the same file 

that is being iterated through without any degradation in 

speed. This remarkable feature of extensible hashing, which 

has not been emphasized before, is exploited in our stream 

processing model. 

It is convenient to introduce the essential ideas behind stream 

processing using a simple example. Consider how to evaluate 

the query: ' f ind all employees whose salary is greater than the 

average employee salary.  This can be expressed 

{x • emps ] sal(x) > (*/[sat(y):  y • emps] )//temps} (1) 

where crops is a set of employees, sal is a function from 

employees to salaries, [sat(y): y • emps] forms a vector of 

salaries for all employees. +/[sat(y): y • cmps] is the sum of 

all these salaries, and #emps is the number of employees in 

emps. 

A standard, but naive, way of evaluating query (1) would bc 

to compute its inner to outer subexpressions as in the 

following 4 assignments: 

cl := [sal(y): y • crops]: (2) 

c2 := + /e l :  
c3 := #emps:  
c4 := {x • e m p s  I sallx) > c2/c3} 

These 4 assignments represent 4 sequential passes through 

possibly large sets or tuples, and 3 intermediate stored results 

before c4 is finally computed. As we will see, stream 

processing will enable c4 to be computed by a straightforward 

procedure using only 2 sequential passes and without having to 

store the costly tuple el. 

We assume that each of the subexpression calculations in the 

sequence (2) is computed by a single sequential pass through a 

set or tuple valued parameter, called a s t r e a m  parameter. 3 

Parameters that are 

n o n s t r e a m  parameters. 

parameters for cl-c4:  

c l  := [ ] ;  
( f o r  x • emps) 

c l  w i t h :  = s a l ( x ) ;  
end; 

cl := []; 

not stream parameters are called 

Table 2 below illustrates the stream 

$initialize cl to empty tuple; 
gperform a sequential search 
Sthrough emps; concatenate 
gthe salary of x to cl 

( f o r  [ e , a m o u n t ]  e s a l )  
c l  with: = amoun t ;  

end; 

a .  e m p s  

c2 := O; 
(for x • el) 

c2 +:= x;  
end ;  

$search through the salary 
$index; concatenate the 
$salary of  e to cl 

and sal are 2 stream parameters f o r  cl 

$search the ci tuple from the ist to 
$1ast component; add the component 
$value x to c2 

b. c l  i s  t h e  s t r e a m  p a r a m e t e r  f o r  c2 

c3 := 0; 
(for x e emps) $search through emps 

c3 ÷:= i; $increment c3 
end; 

c. emps is a stream parameter for c3 

3For sets the sequential pass is unordered; for tuples the 
search proceeds from the first to last tuple componenL 
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e4 :=  {}: 
( f o r  X • emps) 

i£ sal(x) > c2/c3 then Sif the salary of x is 
c4 with: = x; $greater than the average 

end if; $employee s a l a r y ,  add x to  
end ;  $ t h e  s e t  c4 

c4 := { } ;  
(for [ e , a m o u n t ]  • sal) 

if amount > c2/c3 then 
c4 with:= e; Sadd e to the set c4 

end if; 
end; 

d. the stream parameters for c4 are sal and emps; 
c2 and c3 are nonstream parameters 

Table 2. 

Note that cl and c4 can be computed using either of two 

alternative stream parameters. 

Table 2 exhibits two kinds of loop combination techniques. 

One of these techniques can be used when the value of one 

expression is a stream parameter for another expression. For 

example, ci is the stream parameter for c2, and so cl and c2 

can be computed together in a single sequential pass through 

emps; i.e., 

c2 := O: (3) 

cl  := []: 

(for x • crops) 
c2 +:= sal(x): 
cl with:= sal(x): 

end; 

The kind of loop combination used in (3) is called vertical 

loop fusion. Note that the natural data dependency of c2 on 

el.  which is explicit within (2), is absent in (3). 

Consequently, the evaluation of ci within (3) does not 

contribute to the calculation of c2 and can be eliminated. 

Another loop combination technique, called horlzoma/ loop 

fusion, can be used when two expressions share a common 

stream parameter, as in the case of ci  and c3. 

c3 := O; (4) 
cl  := [ ] :  
(for x • emps) 

c3 +:= i: 
cl  with:= sal(x); 

end; 

Vertical and horizontal fusion can also be combined. For 

example, since cl is a stream parameter of  c2, and since cl  is 

constructed within the loop (4) (which resulted from 

horizontal fusion of cl  and c2), we can embellish the loop (4) 

by applying vertical fusion of c2 with respect to cl  within 

(4). The result is shown just below: 

c3 := 0: (5) 

c2 := 0: 
c1 := [ ] :  
(for x • empsl 

c3 +:= 1: 
c2 +:= sal(x): 

cl with:= sal(x); 

end; 

One important thing to note about the code (3), (4). and (5) 

which results f rom loop fusion is that the sequence of 

modifications to each of the variables cl,  c2. and c3 is 

identical to the corresponding sequence found in the 

unoptimized code (executed with respect to one of the stream 

parameters) shown in Table 2. Thus, whenever loop fusion is 

applied, improvement over some standard unoptimized 

implementation is guaranteed. In general, improved 

performance results f rom cutting down on sequential search 

and eliminating code made useless by vertical fusion. 

Application of loop fusion is mitigated by correctness as well 

as performance considerations. For example, it would not  be 

correct to apply horizontal fusion of c4 and c3 with respect 

to their common stream parameter emps. If this kind of 

fusion were applied, c3 would be constructed incrementally (so 

that its full value would not be available) in the same loop in 

which c4 is constructed incrementally. However, the code to 

construct c4 incrementally with respect to emps makes 

reference to the full value of c3. which is not  available. (see 

Table 2 (d)) For the same reason horizontal fusion cannot be 

applied to c4 and el. 

Code that results from loop fusion in accordance with 

restrictions like those just mentioned and that evaluates several 

expressions in the same loop is called a valid loop. It is 

convenient to use the term 'loop' to mean 'valid loop'. 

Sequences of valid loops are also restricted. For example, 

since c4 depends on c3 but cannot be fused with it. the loop 

used to construct c3 must  precede the loop used to construct 

c4. Sequences of loops that obey such restrictions are called 

schedules. The four loops (2) used to construct cL c2, c3, 

and c4 represent a naive schedule with no loop fusion. 

Another schedule for these expressions consists of 3 loops: the 

first loop results from vertical fusion of c2 and cl  with 

respect to sal; the next loop is formed by evaluating c3 using 

the code shown in Table 2 (c); the last loop is an evaluation 

of c4 by either of  the alternatives given in Table 2. A 

schedule for el,  c2, c3. and c4 can even be made from only 

2 loops - loop (5) followed by either of the loops shown in 

Table 2 (d) for evaluating c4. This two-loop schedule is 

optimal in the sense that there are no schedules with fewer 

than 2 loops using vertical and horizontal loop fusion 

transformations. The problem of stream process/rig is to 

find optimal schedules. 

In this paper we only consider stream processing for iterat/ve 

expressions: i.e.. nonrecursively defined expressions that can 

be evaluated using an unordcred sequential search with respect 

to one stream parameter. Thus we do not consider evaluation 

by use of merging two streams, or related techniques in which 

stream values are sorted or ordered in some way. 

Consequently, join operations must  be performed by methods 

not involving sorting (e.g.. by the ' inner-outer" method [25]). 

A relational union is handled by decomposing it into two 

operations (consequently, two loops), a copy and the addition 
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of one relation to another. To perform the cartesian product 

of two relauons, we must  choose one of the relations as the 

stream parameter f rom which the outer loop is formed. For 

each iteration through this loop. the cartesian product is built 

up incrementally by peforming an inner loop through the 

other relation. 

As we will see later on. the problem of stream processing is 

so hard that with these and other restrictions the problem 

remains NP-Hard.  Yet stream processing is a fundamental  

optimization method essential to the efficient translation of 

database queries and very high level languages. As a 

programming language optimization, it may be viewed together 

with finite differencing [21] as a transformation that gives 

rise to variables and turns functional code into imperative 

code. Specifically, stream processing could establish collections 

of equalities indicated within functional programs: such 

equalities could then be maintained in program regions where 

they are needed by finite differencing. (See the Appendix 

for an example of this idea.) Stream processing is also an 

interesting and unusual scheduling problem involving 

precedence constraints between processors (i.e., subexpressions) 

and also between groups of processors (i.e., between loops). 

We feel that stream processing should be investigated, and the 

simple model discussed in this paper is offered as a basis that 

provides enough utility to be convincing, and a sufficient 

window of tractibility to invite further work with more 

complicated models. 

3. A Graph  Theoret ic  F r a m e w o r k  for S t r eam Procesing 

Consider the problem of computing a collection of queries. 

Before stream processing can be used we must  decompose all 

these queries into the basic iterative expressions out of which 

they are composed. 4 Suppose that there are n such iterative 

expressions E1 = f l ,  E2 = f2.....En = fn, ordered from inner 

to outer subexpression: i.e.. there are no occurrences of Ej in 

the expressions fi. l<=i<=j<=n. The expressions can then be 

computed naively by performing n assignments. 

El := fl" E2: = f2;..En := fn, 

which amounts  to n loops. The stream processing problem is 

to partition the computed variables E1....En into groups of 

variables. The variables in each group will be constructed 

within the same loop by vertical and horizontal fusion so that 

an optimal schedule {with the fewest number  of loops) is 

obtained. 

A more formal description of the problem can be stated using 

a graph theoretic representation. We construcl a dependency 

dag D = {V. E) with vertices V and edges E in the following 

wax': 

i. V = {E1.....En.vn+l.....vn+k}. where vn+l...,.vn+k are all the 

variables on which the expressions f l . . . . . fn depend other than 

E1.....En : 

ii. E = {[Ei.x]: i=l..n, x e V I x occurs within fi}: 

It is also useful to define the set of  stream edges: i,e.. 

stream_edges = { [Ei.x] • E [ x is a stream parameter 
of fi} 

We assume that all iterative expressions have at least one 

stream edge. All edges in E that are not  stream edges are 

called nonstream edges. 

An optimal schedule can then be found by the following 

steps: 

i. Choose one stream out--edge [E.x] for every internal vertex 

E. This indicates that E will be computed incrementally with 

respect to its stream parameter x. 

ii. Partition the edges chosen in step (i.) into trees with edges 

directed toward the root, Each tree represents a loop 

involving a sequential pass !hrough the variable associated with 

the root. Within each tree the sybling vertices are 

horizontally fused with respect to the parent  vertex. Each 

grandchild vertex in a tree is vertically fused with its parent. 

iii. Within each tree selected in step (ii), all nontree edges of 
E must  lead to the root of the tree. Within a schedule, no 

edge can lead from an internal vertex of one tree t l  to an 

internal vertex of another tree t2 scheduled after t l .  These 

rules ensure that no expression can be referenced until it has 

been fully computed. In particular, the value of the 

expression associated with the root of  a tree t must  be 

computed at the point when t is scheduled. 

ix,. Choose a partition in step (ii) with a minimum number  

of trees and that also satisfies the conditions of {iii). 

A precise abstract but computable formulation of the steps 

(i}-{iv) above is expressed just below. We use the notation 3s  

1o denote the value of an arbitrary element selected f rom the 

set s. The expression doma in  t denotes all vertices of the tree 

other than the root. {Such vertices are associated with the 

computable variables Ei.i=l..n.) 

$find a tree partition of the stream edges 
Find {tl.....m} partitionof 

3{ F c stream_edges I (V x • domain stream_edges 

i # F i x }  = 1)} i 
$ y can never be referenced before it is fully computed 

(¥ 1 <= i <= j <= n [ (not3 [x,y] • E - tj [ 
x E domain ti & y • domain tj ) 

minimizing n $optimality condition 

Figure 1 exhibits the two cases of prohibitted edges. 

4Of course, such decomposition can greatly effect  the 
success of stream processing. However, this topic will not  be 
considered in the paper. 
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a .  A n o n t r e e  edge  b e t w e e n  2 b.  An edge  b e t w e e n  2 
i n t e r n a l  nodes  o f  a t r e e  t r e e s  t i  and  t j , i < j  

F i g u r e  1. 

Figure 2 is a graph representation of the stream processing 

problem discussed in the last section. 

4 ~ ~ 3 , 4 )  ; (1) ; (6) ( 1 , 2 , 4 )  ; (6) 

a .  P rob l em I n s t a n c e  b. S u b o p t i m a l  c .  O p t i m a l  
S c h e d u l e  S c h e d u l e  

F i g u r e  2.  Broken  t i n e s  d e n o t e  n o n s t r e a m  e d g e s .  

4. Complexity Resul t s  

Unfortunately,  the following theorem states that the stream 

processing problem is intractable in general. 

Theorem 1: The Stream Processing Problem (SPP) is NP hard. 

proof) Consider a simple instance of the stream processing 

problem, El=fl . . . . ,En=fn,vn+l. . . ,vn+k, where none of the fi 's 

depend on any of the Ej's, and the dag representation only 

contains stream edges. Then we only have horizontal fusion. 

(See figure 3 below'.) 

Figure 3. 

An optimal schedule is equivalent to finding a minimal set of 

input variables vn+l.....vn+k connected to all expressions 

fl. . . . .fn. Bul this is a formulation of the NP-Hard  Hitting 

Set Problem [9]. J 

Because of this negative resull it would seem to be worthwhile 

to make the problem easier to solve by imposing some 

additional conditions. The obvious restriction is to preselect 

the stream edges so that each basic iterative expression has 

only 1 stream parameter. In terms of the dag representation 

this restriction makes the stream edges a forest. But 

surprisingly, this restricted stream processing problem (RSPP) 

is also NP-Hard.  

In the following discussion it is useful to distinguish between 

the decision and optimization problems for RSPP. The RSPP 

Decision Problem asks whether there is a schedule of  length 

k or less for  an arbitrary RSPP instance. The RSPP 

Optimization Problem is to f ind the optimal schedule for  an 

arbitrary RSPP instance. 

Observe that in order to produce an optimal schedule it is 

only neeesary to compute an initial loop of an optimal 

schedule. If D = (V,E) is the Dag representation of an RSPP 

instance, let F be the initial loop of an optimal schedule, and 

let D" be the subgraph of D induced by removing the edges 

of F and all nonstream edges of D entering vertices of  F. If 

P2,....Pm is an optimal schedule for D', then F.P2....,Pm is an 

optimal schedule for D. In the proof of  Theorem 2 below, we 

say that D'  is the graph resulting from scheduling F. 

Theorem 2:. The RSPP Decision problem is NP--Complete 

proof) We reduce a variation of the NP--Complete problem 

called CYCLEBREAK to the RSPP decision problem. 

CYCLEBREAK [9] is the following problem: given a directed 

graph G and a natural number  k, is it possible to obtain an 

aeylic graph from G by removing at most  k vertices? The 

variation which we consider is: are there k vertices wl, w2, 

. . . .  wk of G such that removal of  all edges leading into 

these k vertices results in an acylic graph? 

Given ~ directed graph G = (V, E) with V = {vl . . . . .  vn}. 

let f(G) be the RSPP instance with vertex set {ai. bi. el: 

i=l. .n}, stream edges {[hi. ai].  [ci. bi] : i=l . .n},  and 

nonstream edges {[ci. bj] : [vi. vj] in E}. 

= = ,  uz E 
vc % 

a.  edge [ v i , v j ]  in  E b. f ( [ v i , v j ] ) ,  where  t h e  
broken edge is nonstream 

We show that a graph G can be made aeyclic by removing k 

vertices iff f(G) has an RSPP schedule of  n+k or fewer loops. 

Observe that by the definition of a loop. the graph f(G) 

restricted to a loop must  be a tree. The only possible loops 

are of the forms {[hi. ai]},  {[bi. ai],  [ci, bi]} and {[ci, 

bi]}.  Loops of the form {[bi. ai]} are called type 1 loops: 

loops of the other two forms are type 2 loops. Since the 

vertices bi, i = 1...n have no nonstream parameters, a type 1 

loop may always be placed as the initial loop of a schedule. 

Let D = f(G). If D" is a subgraph of D. define C(D') to be 

the graph obtained by collapsing the vertices ai. bi, and ¢i for 

each i = 1...n. Thus C(f(G)) = G. If D' is the graph that 

results from scheduling a type 1 loop { [hi. ai] }. then C(D') 

is the graph formed from G by removing all edges entering 

vi. If D' results f rom scheduling a type 2 loop containing 

the edge [ci, bi].  then C(D') is identical to G except that the 

vertex vi is removed. Note that such a type 2 loop can only 

be scheduled for a graph D when the vertex vi in C(D) has 
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outdegree 0. Also note that any schedule for D must  have 

exactly n type 2 loops. 

Now suppose that a graph G can be made aeyclic by 

removing k vertices. We show that f(G) has an RSPP 

schedule of k + n or fewer loops. Let D = f(G). There is 

a set W = {wl, w2 . . . . .  wk} such that removal of  all edges 

leading into wl,w2,...,wk results in an aeyclic graph G'. Let 

D" be the graph resulting f rom scheduling k type 1 loops 

{[bi. ai] : vi in W}. CID') = G'. Since G'  is finite and 
acyelic there is a vertex vi with outdegree 0. Thus it is valid 

to schedule a type 2 loop corresponding to vi, i.e. either { [bi, 

ai] ,  [ci, bi] } or if { [bi, ai] } has been already scheduled 

then { tel. bi] }. In fact it is possible to schedule all n type 

2 loops, because scheduling of a type 2 loop in D'  

corresponds to removing a vertex from C(D'). The resulting 

graph will again have a vertex with our.degree 0, which will 

allow another type 2 loop to be scheduled. This can be 

repeated until all n vertices have been removed. Thus. RSPP 

for the graph f(G) can be solved using k + n loops. 

Conversely suppose the RSPP instance D can be solved using 

k * n loops. Since any schedule can be altered by moving all 

type 1 loops to the front,  we assume our schedule has all of  

its k type 1 loops occurring first. Let W = {vi : { [bi, ai]} 

is a loop appearing in the schedule for D}. Let D" be the 

graph resulting from scheduling the type 1 loops. Let G'  = 

C(D'). G" is the graph formed from G by removing all 

edges entering W. We claim that G'  is acylic. Suppose it is 

not. Then it is not possible to find a sequence sl  . . . . .  sn of 

vertices such that si has outdegree 0 in the graph G" with 

vertices sl  . . . . .  si-1 removed. But that is precisely what is 

required for the RSPP instance D" to be solved with n type 2 

loopse 

Corollary:.  The RSPP Optimization Problem is NP-Hard 

Despite the preceding negative result we should understand 

that any feasible schedule that involves only a single instance 

of fusion is better than the naive unoptimized schedule. 

Thus. it is worthwhile to consider various efficient algorithms 

that give suboptimal schedules, or that give optimal schedules 

on significant subclasses of problem instances. In the next 

section we will present two such algorithms. 

5. S t r eam Processing A l go r i t hms  

The first algorithm for solving RSPP sketched below is highly 

efficient, but gives suboptimal performance except for only a 

modest subclass of problem instances. It uses a greedy 

strategy in that each tree added to the schedule contains a 

maximum number  of edges. 

Greedy Algorithm 

input: an instance of RSPP: D = (V,E), stream-edges 

A. mark a l l  r o o t s  i n  t h e  f o r e s t  
B. r e p e a t e d l y  f i n d  l o o p s  u n t i l  a l l  v e r t i c e s  a r e  

ma rked :  
i .  p i c k  a s t r e a m  edge  [ x , r ]  where  r i s  

marked and x is not, and assign it to 
tree; r will be the root of the tree 

ii. until it is no longer possible, 
augment tree with a stream edge [u,v] 
for which, 

a. v is in tree, 
b. u is not in tree 
c. all nonstream edges leading out 

of v must l e a d  into marked  vertices 
ili. add tree to the end of the schedule and 

mark the vertices in tree 

The greedy algorithm runs in O(#E) steps, and can be 

modified with little effort to solve the more general problcrn 

of SPP with the same tirnc complexity. 

The ,greedy algorithm for solving RSPP can be made even 

greedier. In step B (i.), the choice of root can be made 

based on a maximal tree over all choices of possible roots. 

This algorithm {called the 'greedier' algorithm) maintains a 

heap of tree sizes for each potential root and runs in O(#E 

log #V). It too can be adapted to SPP without changing the 

asymptotic time complexity. However. as is illustrated by 

Figure 4 below, the greedier algorithm can easily yield 

suboptimal schedules. 

21.~r~ ( 1 , 2 , 4 )  ; (3) ; (5) ( 1 ) ; ( 2 . 3 , 4 , 5 )  

a. RSPP dad b. greedier c. optimal 
schedule schedule 

Figure 4. Broken lines are nonstream edges 

Since the greedier algorithm can only yield optimal solutions 

on a modest class of problem instances, it is worthwhile 

considering other algorithms designed specifically for a wide 

class of instances for which optimality is achieved. If this 

class is contained in the class of RSPP instances, and if the 

algorithm will give reasonable suboptimal solutions on RSPP 

instances ouside of this class, then 2 approaches can be taken 

to solve SPP. The first approach to solve an SPP instance P 

would be to choose a best solution over all possible RSPP 

instances contained in P. The second approach is to solve an 

RSPP instance formed heuristically f rom an SPP instance. 

The first approach obviously yields better results, and may be 

fairly efficient for small sized SPP instances, or for the case 

when there are only a few vertices having more than 1 stream 

edge leading out. Because so many of the iterative 

expressions given in Table 1 are either unary or have 2 stream 

parameters, we expect that this first approach will often be 

reasonable. 

When the first approach is too costly, it is possible to utilize 

a modified version of the greedier algorithm to reduce any 
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SIP instance to a "reasonable' choice of  RSPP subinstance. 

This entails choosing a subset of the stream edges that forms 

a forest (i.e., a valid ILSPP subinstance) with a minimal 

number of  trees. All of  the stream edges outside of this 

forest are considered nonstream edges. 

The next algorithm will produce optimal results for  a subclass 

of  RSPP instances. The basis of  our algorithm is the 

observation that a certain kind of cyclical structure in the dag 

is the basis for the NP completeness resulL If this structure 

is not present an optimal solution can be found efficiently. 

The following definit ions facilitate the explanation of the 

algorithm. 

Defini t ion 1: A /orward edge in an RSPP instance is a 

nonstream edge [x,y] for  which there is a path f rom x to y 

consisting only of stream edges, All other nonstream edges 

are called cross edges. 

Definition 2: The head vertices in an RSPP instance are the 

dag roots (vertices with 0 outdegree but  that have at least one 

entering stream edge) and the heads of forward edges. 

Def ini t ion 3: We define a partial ordering on the head 

vertices in the following way. If x and y are 2 head vertices. 

then x < y if there exists a path from x to y consisting only 

of stream edges. 

Def in i t ion  4: x is a minimal head if there is no head y for 

which y < x. 

Def ini t ion 5: A minimal tree is a tree that has a minimal 

head as the root and a maximal number  of stream edges. 

Forward-edge Algorithm 

input: an instance of RSPP. D = (E.V), stream-edges, heads; 

Repeat the following steps until no stream edges are left  in 

the dag. 

A. If there exists a minimal tree (representing a loop) with no 

cross edges leading into any of its internal vertices, place it at 

the beginning of the schedule. Otherwise execute a variant of 

the greedy algorithm that chooses a tree t starting from the 

leaves (instead of f rom a root) of any minimal tree. Place t 

at the beginning of the schedule. 

B. Remove the tree chosen in step A and all edges leading 

out of it f rom the dag. Also, delete f rom heads the head of 

the tree just removed and all heads in the remaining dag with 

no forward edges leading into them. 

Theorem 3: When the greedy algorithm is never executed in 

step A, the Forward Edge Algorithm yields an optimal 

solution. 

proof) The proof is by induction on the size of  an optimal 
schedule. Let S = [T1,...,Tk] be an optimal schedule of  k 

loops T1.....Tk. If k=l,  then the Dag representation of the 

RSPP instance must  have only one head vertex. Hence, the 

forward edge algorithm will execute step A only once and 

form the optimal schedule from a single minimal tree. 

Assume that the forward edge algorithm will find optimal 

schedules of  size less than or equal to k. and consider an 

RSPP instance with an optimal schedule of  size k+l. Let T 

be the first minimal tree detected in step A of the forward 

edge algorithm. Let Tj be the last tree in the schedule S that 

contains common edges with T. Since any nonstream edge 

contained in T must  lead from an internal vertex of T to the 

root of  T, and since there arc no stream edges in the dag 

representation of the RSPP instance leading into T, we know 

that Tj must  be a subtree of T. We can then form a new 

optimal schedule S" from S by replacing Tk with T and 

removing from all other components of S all those edges 

belonging to T but not Tk • 

The forward--e, dge algorthm can be tailored to run in O(#E) 

steps. It can also be modified to construct parallel schedules. 

Parallel schedules are sequences of stages in which each stage 

contains a set of loops that can be executed in parallel, and 

all the loops at one stage must be executed before any of the 

loops at the next stage. A parallel schedule can be 

constructed by changing Step A so that the set of all minimal 

trees (with no cross edges leading in) are determined. This 

set would be a stage placed at the beginning of the schedule. 

6. His tory  

The idea of stream processing traces back to loop fusion, a 

program transformation described by Allen and Cocke [1] for 

merging two separate Fortran do loops into a single loop. 

Figure 5 illustrates the technique on code that computes the 

sum of the vector dot products a.b + c.d. 

do 1 i -- 1,n 
suml = sum1 + a(i)*b(i)) 

i continue 

do 2 j = 1.n 

sum2 = sum2 + c(j)*d(j) 
2 continue 

sum = suml + sum2 

do 2 i = 1,n 

sum1 = sum1 + a(i)*b(i)) 

j=i 

sum2 = sum2 + c(j)*d(j) 
2 continue 

sum = suml + sum2 

Figure 5. Fortran Loop Fusion 

Recently, Fortran loop optimizations by fusion and more 

complicated loop rearangements have been developed in depth 

by Allen [2]. 

Burstall and Darlington discuss both horizontal and vertical 

loop fusion of recursive equations within the context of their 

Lisp transformational programming system [4]. Figure 6 

illustrates the dot product example of Figure 5 in in this new 

context. 
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dot(x,y.nl = if n=O then 
0 

else 
dotix,y,n-1) + x(n)*y(n) 

end if 

(a) Dot product definition 

f(a.b.c,d.nl = dot(a.b.n) * dot(c.d.n) ==> 

f(a.b.c.d.n) -- if n=O then 
0 

else 
f(a.b.c.d.n-ll + a(n)*b(n) 

+ e(n)*d(n) 
end if 

(b) Horizontal Loop Fusion 
Figure 6. 

Burge later reformulated the techniques of Burstall and 

Darlington. and he presented examples of loop fusion of 

recursively defined Lisp procedures [3]. Friedman and Wise 

investigated more complicated examples of streaming and 

proposed a new implementation technique called suspended 

evaluation [7]. They also applied their technique to file 

systems [8]. Some of these ideas are surveyexl in [12]. 

Using a Lisp program development system based on 

Dartington's earlier transformational system. Feather [6] 

demonstrated the importance of fusion technique to the 

construction of moderate sized software systems. While 

Burstall and Darlington illustrated fusion for simple 

expressions, Feather generalized the technique effectively to 

interface more complicated procedures. Guibas and Wyatt 

illustrated fusion techniques to improve APL code, and they 

presented a simple algorithm that could apply fusion 

automatically within an optimizing compiler [10]. More 

recently, Reif and Scherlis stressed the importance of loop 

fusion in the derivation of complicated graph algorithms using 

a depth first search strategy [23]. 

While the preceding references discuss loop fusion 
transformations implemented manually or by highly specialized 

algorithms, Morgenstern explored automatic loop fusion 

transformations in depth, within the context of file processing 

systems [16]. Morgenstern used a dynamic programming 

algorithm to implement his transformations, but no analytic 

investigation of performance was made. However. his 

empirical studies showed that his algorithm was too slow to 

handle more than toy problems. 

Housel [13]  later considered a batch oriented data 

restructuring application, which was similar to Morgenstern's 

work, but involved a simpler model and a more naive 

scheduling algorithm. In particular, Housel only considered a 

limited number of primitives that included sorting and 

operations constrained to perform sequential processing on all 

of its arguments, the kind of model that would be useful for 

tape resident files. 

Various algorithmic improvements m data restructuring have 

emerged recently from the Model programming language 

project [15, 22]. A nonalgorithmic approach in which loop 

definitions and scheduling are all specified within declarations 

has been propesed by Waters [28]. Overmars has applied 

stream processing to improve the space bounds on data 

structures used for solving hatched search problems [17]. 

Based on the general transformational technique of finite 

differencing. Paige discovered a useful framework for 

implementing vertical and horizontal expression fusion 

efficiently [18. 21] - however, the scheduling algorithms 

presented there yielded solutions much worse than those 

presented in our paper. Weixalbaum later found a notation 

based on the integral calculus for describing Paiga's ideas, and 

his unpublished manuscript refers to the fusion 

transformations expressed in his operator language as 'formal 

integration" [29]. Sharir later published similar results along 

with some examples [26]. Like earlier research in loop 

fusion. Weixalbaum and Sharir describe fusion informally and 

provide no implementation algorithms. 

7. Conclusion 

We have presented a new graph theoretic model for stream 

processing of iterative expressions. Within this model, 

optimality is investigated with respect to the number of fused 

loops. Although solving this problem is shown to be 

theoretically hard, several new efficient algorithms are 

presented. The greedier algorithm yields suboptimal solutions 

on all but a modest subclass of problem instances, while the 

forward-edge algorithm gives optimal solutions on a wide class 

of problem instances. Our initial case studies of stream 
processing applied to database and program optimization 

strongly suggest the importance of this transformation, and 

should encourage further investigations to explore optimal 

schedules with respect to other criteria; e,g., space utilization 

(regarding total space required after dead code elimination), 

access costs, criteria with respect to models involving merging 

and sort orders, parallel models, etc. 

Appendix. Stream Processing Applied to a Useless Code 
Elimination Procedure 

In [19]. a derivation is presented of an efficient useless code 

elimination procedure (based on [14]) from the abstract 
formulation just below: 

crit := prints: 
(converge) $Repeat until crit no longer changes. 

crit o:= instof [usetodef [iuses [crit] ] ] u 
compound [crit] : 

end: 

where the variables are defined as follows: 

prints: set of print statements 
iuses: maps each statement to the variable uses 

it contains 
usetodef: maps each variable use to the variable 

definitions that can reach it 
instof: maps each variable occurrence to the 

statement immediately containing it 
compound: maps each statement to the compound 

statement immediately containing it 
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The derivation reqmres collecUve initializauon and differentml 

maintenance of the following 14 invanants,  

u s e s  = iuses [ crit ] 
d e f s  = u s e t o d e f  [ u s e s  ] 
insts = instof [ defs ] 
comps = compound [ crit ] 
instpnts = insts u comps 
newinsts = { x • instpnts I x e crit } 
compstream = {[y,x]: x • crlt, y e compound { }} x 
ncompstream = { [ x , #  compstream{ x } ] :  x • domain 

compstream} 
u s e p s t r e a m  = {[y,x]: x • crit iuses 
nusepst ,ea .  =  tx,# usepstrea= : } ] x domain 

usepstream} 
defpstream ~ {[y,x]: x • uses, y • usetodef { x 3} 
ndefpstream = {[x ,  # d e f p s t r e a m  { x 3 ] :  x • domain  

d e f p s t r e a m 3  
i n s t p s t r e a m  ffi { [ y , x ] :  x • d e f s ,  y • i n s t o f  { x } } 
n l n s t p s t r e a m  = { [ x , #  i n s t p s t r e a m {  x 3 ] :  x • domain  

i n s t p s t r e a m }  

whose dependency graph (with stream parameters drawn as 

single edges) appears below: 

b r o k e n  l i n e s  a r e  n o n s t r e a m  e d g e s  

Application of the Greedier or the Forward--edge algorithms 

will collapse those 14 im~ie i t  loops into a single loop shown 

below: 

newinsts := { } ; 
instpnts := { } ; 
insts := { } ; 
nlnstpstream := { } ; 
instpstream := { } ; 
d e f s  := { } ; 
n d e f p s t r e a m  :=  { } ; 
d e f p s t r e a m  :=  { } ; 
u s e s  : =  { }  ; 
n u s e p s t r e a m  := { } ; 
u s e p s t r e a m  := { } ; 
comps := { } ; 
n c o m p s t r e a m  := { } ; 
c o m p s t r e a m  := { } ; 
( forall x4 • crit ) 

( forall x3 • iuses { x4 } | 
nusepstream ( x3 ) = 0 

( f o r a l l  x16 • u s e t o d e f  { x3 } t 
n d e f p s t r e a m  ( x16 ) = 0 ) 

( f o r a l l  x21 • i n s t o f  { x16 } 1 
n i n s t p s t r e a m  ( x21 ) = 0 ) 

i f  x21 e c r i t  t h e n  
newinsts with := x21 ; 

end if ; 
i n s t p n t s  w i t h  := x21 ; 
insts with := x21 ; 

end forall ; 

f o r a l l  x29 e i n s t o f  { x16 } ) 
n i n s t p s t r e a m  ( x 2 9 )  + := 1 ; 
i n s t p s t r e a m  { x29 } w i t h  := x16 ; 

end  £ o r a l l  ; 
defs with := x16 ; 

end f o r a l l  ; 
( £ o r a l l  x 2 6  e u s e t o d e f  { x 3  } ) 

n d e f p s t r e a m  ( x26 ) + := I ; 
d e f p s t r e a m  { x26 } w i t h  := x3 ; 

end  f e r a l 1  ; 
u s e s  w i t h  := x3 ; 

end  £ o r a l l  ; 
( £ o r a l l  x38  • i u s e s  { x4 } ) 

n u s e p s t r e a m  ( x38 ) + : =  1 ; 
u s e p s t r e a m  { x38 } w i t h  := x4 ; 

end  f o r a l l  ; 
( £ o r a l l  x8 e compound { x4 } ] 

n c o m p s t r e a m  ( x8 ) = 0 ) 
i f  x8 ~ i n s t s  t h e n  

i£  x8 ~ c r i t  t h e n  
n e w l n s t s  with :=  x8  ; 

end  i f  ; 
£ n s t p n t s  w i t h  := x8 ; 

end  i f ;  
comps w i t h  :=  x8  ; 

end  f e r a l 1  ; 
( f e r a l 1  x 1 3  • compound  { x 4  } ) 

n c o m p s t r e a m  ( x13 ) + := 1 ; 
c o m p s t r e a m  { x13 } w i t h  := x4 ; 

end f o r a l l  ; 
end f o r a l l  ; 
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